پیش بینی وقوع بیماری زنگ نوار گندم با استفاده از مطالعه سری زمانی تصاویر ماهواره سنتینل-2 : مطالعه موردی نینگ یانگ چین

نوع مقاله : مقاله پژوهشی

نویسنده

دانشجوی کارشناسی ارشد سنجش از دور دانشگاه شهید بهشتی

چکیده

زنگ نوار گندم تأثیر شدیدی بر عملکرد و کیفیت گندم دارد. یک روش پیش‌بینی مؤثر برای امنیت غذایی ضروری است. در این مطالعه، ابتدا، شاخص های پوشش گیاهی بهینه مربوط به تنش زنگ نوار به عنوان ویژگی‌های کاندید برای پیش‌بینی بیماری از تصاویر سری زمانی 2Sentinel- استخراج می‌شوند. سپس، ترکیبات VI بهینه با استفاده از انتخاب متوالی رو به جلو (SFS) انتخاب می شوند. در نهایت وقوع زنگ نوار گندم در بازه های زمانی مختلف با استفاده از روش ماشین بردار پشتیبان (SVM) پیش بینی می شود. نتایج ویژگی‌های انتخاب‌شده نشان می‌دهد که، قبل از دوره اتصال، VIs بهینه مربوط به زیست توده، رنگدانه و رطوبت گندم است. پس از دوره اتصال، VIs های لبه قرمز مربوط به وضعیت سلامت محصول نقش مهمی ایفا می کنند. دقت کلی و ضریب کاپا مدل پیش‌بینی، که مبتنی بر SVM است، به طور کلی بالاتر از روش‌های K-نزدیک‌ترین همسایه (KNN) و شبکه عصبی پس انتشار (BPNN) است. روش SVM برای پیش‌بینی سری‌های زمانی زنگ نوار گندم مناسب‌تر است. مدل دقت را بر اساس ترکیبات VI بهینه به دست آورد و SVM در طول زمان افزایش یافت. بالاترین دقت 86.2 درصد بود. این نتایج نشان می‌دهد که مدل پیش‌بینی می‌تواند راهنمایی‌ها و پیشنهادهایی را برای پیشگیری زودهنگام از بیماری در محل مورد مطالعه ارائه دهد و این روش تصاویر سری زمانی Sentinel-2 و SVM را ترکیب می‌کند که می‌تواند برای پیش‌بینی زنگ نوار گندم استفاده شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Forecasting the occurrence of wheat stripe rust disease using time series study of Sentinel-2 satellite images: A case study of Ningyang, China.

نویسنده [English]

  • Seyed Hamid Reza Mirnemati

Master's student in remote sensing of Shahid Beheshti University

چکیده [English]

Wheat stripe rust has a severe effect on the yield and quality of wheat. An effective forecasting method is essential for food security. In this study, firstly, optimal vegetation indices related to belt rust stress are extracted as candidate features for disease prediction from 2-Sentinel time series images. Then, optimal VI combinations are selected using sequential forward selection (SFS). Finally, the occurrence of wheat stripe rust in different time intervals is predicted using Support Vector Machine (SVM) method. The results of the selected traits show that, before the binding period, the optimal VIs are related to biomass, pigment and moisture of wheat. After the connection period, the red-edge VIs related to the health status of the product play an important role. The overall accuracy and kappa coefficient of the prediction model, which is based on SVM, is generally higher than K-nearest neighbor (KNN) and back-propagation neural network (BPNN) methods. SVM method is more suitable for predicting time series of wheat rust. The model achieved accuracy based on optimal VI combinations and the SVM increased over time. The highest accuracy was 86.2%. These results show that the prediction model can provide guidance and suggestions for early disease prevention in the study area, and this method combines Sentinel-2 time series images and SVM, which can be used to predict wheat stripe rust.

کلیدواژه‌ها [English]

  • Wheat"
  • Remote Sensing"
  • Vegetation"
  • Strip Rust Disease"
  • Time Series"
  • "
  • Prediction"
  • تاریخ دریافت: 28 مرداد 1401
  • تاریخ بازنگری: 01 آبان 1401
  • تاریخ پذیرش: 20 شهریور 1401