نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشگاه جامع امام حسین (ع)
2 جهاد دانشگاهی کردستان
3 دانشگاه شهید بهشتی
4 دانشگاه حکمت قم
چکیده
هدف این پژوهش، توسعه و ارزیابی یک مدل ترکیبی مبتنی بر یادگیری عمیق جهت طبقهبندی دقیق محصول توتفرنگی با استفاده از تصاویر سریزمانی ماهواره سنتینل-۲ و دادههای فنولوژیکی بومی در استان کردستان است. تمرکز بر شناسایی مکانی محصولات با پراکنش محدود و چرخه رشد خاص، انگیزه اصلی طراحی مدل در این تحقیق بوده است.
ابتدا دادههای زمینی در فصل زراعی ۱۴۰۱ از طریق GPS و تقویم زراعی منطقه گردآوری و برچسبگذاری شدند. سپس تصاویر منتخب سنتینل-۲ که از لحاظ زمانی با مراحل فنولوژیکی رشد توتفرنگی همپوشانی داشتند، تحت پیشپردازشهای هندسی، رادیومتریکی و اتمسفری قرار گرفتند. این دادهها بهعنوان ورودی به یک شبکه عصبی کانولوشنی با سه لایه کانولوشن، یک لایه Pooling، دو لایه تماماً متصل و تابع خروجی Softmax معرفی شدند. برای مقابله با نامتوازنی کلاسها، از تکنیک وزندهی کلاس و بهینهسازی پارامترها با روش جستجوی شبکهای استفاده شد. فرایند آموزش با الگوریتم Adam و نرخ یادگیری 0.0001 در طی 150 اپک انجام شد.
مدل پیشنهادی موفق به طبقهبندی ۱۵ کلاس کاربری اراضی با دقت کلی ۹۶.۵۷ درصد و ضریب کاپای ۰.۸۵۸۲ گردید. برای کلاس هدف یعنی توتفرنگی، شاخص F1 معادل ۸۶.۴ درصد بهدست آمد که نشاندهنده تعادل مطلوب میان دقت و یادآوری است. همچنین عملکرد مدل در طبقهبندی محصولات با سطح زیرکشت محدود و ساختار مکانی غیرمنظم قابل توجه بوده است، اگرچه در کلاسهایی مانند گلخانهها و مراتع با ناهمگنی طیفی بالا، دقت کاهش یافته است. تحلیل خطا نیز نشان داد که بخش عمده اشتباهات مربوط به مرزهای طیفی مشابه و نوسانات اقلیمی دوره رشد بوده است.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Strawberry Crop Classification Using Sentinel-2 Satellite Imagery and a CNN Deep Learning Algorithm: A Phenology-Based Local Approach
نویسندگان [English]
1 Imam Hossein Comprehensive University
2 Jihad University of Kurdistan
3 Shahid Beheshti University
4 Hekmat Higher Educational Institution
چکیده [English]
The aim of this study is to develop and evaluate a hybrid deep learning-based model for accurate classification of strawberry crops using Sentinel-2 satellite time-series imagery and indigenous phenological data in Kurdistan Province. The primary motivation for designing the model lies in the spatial identification of crops with limited distribution and specific growth cycles.
Ground truth data were collected and labeled during the 2022 growing season using GPS and the regional agricultural calendar. Selected Sentinel-2 images temporally aligned with the phenological stages of strawberry growth underwent geometric, radiometric, and atmospheric preprocessing. These data were then fed into a Convolutional Neural Network (CNN) consisting of three convolutional layers, one pooling layer, two fully connected layers, and a Softmax output function. To address class imbalance, class weighting techniques and grid search optimization were employed. Data augmentation was also utilized to enhance the model's generalizability. The training process was conducted using the Adam optimizer with a learning rate of 0.0001 over 150 epochs. The proposed model successfully classified 15 land use/land cover classes with an overall accuracy of 96.57% and a Kappa coefficient of 0.8582. For the target class—strawberry—the F1-score reached 86.4%, indicating a favorable balance between precision and recall. The model demonstrated strong performance in identifying crops with limited cultivated areas and irregular spatial structures, although accuracy declined in classes such as greenhouses and rangelands due to high spectral heterogeneity. Error analysis revealed that most misclassifications occurred at spectrally similar boundaries and during climatic fluctuations in the growth period.
کلیدواژهها [English]